Effect of Contact Force Models on Granular Flow Dynamics
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Abstract: The contact force model consisting of a linear spring dashpot with a frictional glider has been widely adapted to simulate
granular flows. Real contact mechanics between two solid bodies is very complicated. Extensive theoretical and experimental studies exist
for binary contacts. Very little work has been reported that addresses the effect of contact mechanics on the bulk behavior of granular
materials. We first briefly summarize the difference of binary contacts between a linear spring—dashpot model and the Hertzian nonlinear
spring with two nonlinear dashpot models. We then compare the constitutive behaviors of a granular material using a linear and a
nonlinear model. The stress- and strain-rate relation in simple shear flow and the resulting coordination number are calculated using the
discrete element method. It is found that although at the grain level binary contact between two particles depends on whether a linear or
a nonlinear model is used, the bulk behavior of granular materials is qualitatively similar with either model.
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Introduction

Flows of granular materials have been numerically simulated
using disk or sphere particles. Different contact models between
particles may be applied to obtain the dynamic interaction be-
tween the stress and strain rate. The most widely used is the linear
spring—dashpot model with a frictional limit in the tangential di-
rection (e.g., Cundall et al. 1979; Zhang and Rauenzahn 2000;
Campbell 2002). In fact, contact mechanics between solid sur-
faces is a complex subject that has been studied for over a cen-
tury. The seminal work of Hertz (1882) for elastic spheres is one
example. Theoretical development for idealized cases is summa-
rized in Johnson (1987).

Linear spring dashpot is a drastic simplification of the real
contact between objects. Numerous different models and their
implications in the force—velocity—displacement relation between
two contacting objects have been discussed in the literature (e.g.,
Zhang and Whiten 1996; Kuo et al. 2002; Mishra and Murty
2001; Roux 2004; Di Maio and Di Renzo 2004a,b). Some of these
models focused on the end results of the energy dissipation rep-
resented by the restitution coefficient (Ramirez et al. 1999); some
focused on the micromechanics at the contact surface resulting in
local slip and plasticity (Vu-Quoc et al. 2001). Thermodynamic
inconsistency has been shown in some simplified contact models
(Elata and Berryman 1996).

To numerically simulate a large number of interacting par-
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ticles, a simple algorithm is desired. Therefore, the linear contact
model has its appeal. The key question is: Does the contact model
affect the bulk behavior of a granular material? Surprisingly, not
much has been reported concerning this issue. Mishra and Murty
(2001) compared the results between a linear and a nonlinear
contact model applied to a ball mill. They found that if one chose
the parameters in the linear model by minimizing the difference
between the contact forces over the whole duration of impact, the
power requirement for the ball mill from the two models is almost
the same.

In this study, we investigate a subset of a general power-law
contact model that includes both the linear and the Hertz contact
models. We first examine the binary collision properties: force—
velocity—displacement relation and the velocity-dependent restitu-
tion. We then investigate the bulk behavior represented by the
stress—strain-rate relation and the coordination number. The effect
of linear versus nonlinear contact models will be observed. A
discrete element simulation of nonuniform particles in a simple
shear flow generates the data for this study.

Linear and Nonlinear Contact Models
for Normal Collisions

In this section we consider the impact of the contact force model
on binary collisions. To simplify the analysis, we concentrate
on the normal impact only. A great many studies have been
performed on particle collisions with physical experiments and
theoretical analysis (e.g., Bridges et al. 1984; Zhang and Whiten
1996; Ramirez et al. 1999; Mishra and Murty 2001; Di Maio and
Di Renzo 2004a,b). Here, a brief review of some key studies
relevant to this work will be given.

The contact force between two particles is most commonly
described with an elastic spring and a viscous dashpot. The fol-
lowing represents a general model (Ramirez et al. 1999)

mi=F,+F,; F,=Kx* and F,=Cx"x (1)

where m=particle mass; K,, and C,=effective stiffness and vis-
cosity, respectively; x represents the amount of overlap between
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the two particles; and x=relative velocity of the two particles
moving towards each other. When a=1, 3=0 the above is the
usual linear spring—dashpot case. The Hertz contact model is re-
alized when a=3/2, C,=0.

In the linear contact force model, the viscous coefficient

CL=(,\2MKL 2)

where M=mean mass of the two colliding particles; K- and
Cﬁ =effective viscous coefficient and stiffness of the linear con-
tact model; and {,, is related to the restitution coefficient e through
(Babic et al. 1990)

—Ine
b=—T5——— (3)
v+ 1In~e

Since F,=C%% in a linear spring—dashpot model, the initial impact
force is not zero despite the absence of particle overlap. Zhang
and Whiten (1996) and several other investigators pointed out this
problem in a linear model. For any nonlinear (NL) damping such
that Fy=Ch"xPx, the initial damping force vanishes with any
positive (3. Both the linear and nonlinear models predict force
reversal at the end of an impact (Zhang and Whiten 1996; Kuo
et al. 2002). Such spurious attractive force should not be present
for cohesionless materials, indicating the nonphysical behavior of

the viscous damping in general.
From the Hertz theory, the normal stiffness coefficient for an

elastic sphere may be written as

T3 (1-1?) “

where KnNL=stiffness of nonlinear contact model; R=particle ra-
dius; and £ and v=Young’s modulus and Poisson ratio of the
particle, respectively. The above nonlinear model has been com-
pared favorably to physical experiments and numerical solutions
(Falcon et al. 1998; Zhang and Whiten 1996).

For elastic spheres, a«=3/2 has been well established. On the
other hand, at least two different values for 3 have been found
based on experimental data and analytical solutions. Kuwabara
and Kono (1987) extended the Hertz theory, and found that
B=1/2 for a sphere-to-sphere contact. This value of 3 was veri-
fied for steel ball impact on a steel rod (Mishra and Murty 2001).
Experiments by Falcon et al. (1998) using tungsten carbide im-
pacting on a flat duralumin plate showed that it was better to set
B=1/4. Briggs and Bearman (1995) conducted an experiment
using several types of rocks including sandstone, granite, and
basalt. Their data also suggested B=1/4. Zhang and Whiten
(1996) used a dimensional argument to suggest B=1/4 for
Hertzian contacts. From these studies, it is clear that different
materials may require different nonlinear models to accurately
describe their contact mechanics. In the subsequent analysis, we
will study a=1 with 3=0 and a=3/2 with B=1/4 or f=1/2.

Numerical Simulation of Two Particles
in a Normal Collision

In this section, we will study the difference between linear and
nonlinear models in a binary collision using a numerical proce-
dure. We compare the resulting force, displacement (overlap), and
relative velocity during two particles engaged in a normal colli-
sion and the relationship between the initial velocity and the
restitution coefficient. For special cases these results have been

obtained analytically. The numerical approach provides a tool for
cases in which analytical solutions are not possible.

For the linear model, we set the effective stiffness
Ki=1x10* N/m, particle diameter D=1cm, and density
p=1X10° kg/m>. There is no standard way to establish a quan-
titative comparison between different contact models. In order
to facilitate a qualitative comparison among different contact
models, our strategy is to first define a maximum displacement
(overlap) from the collision, then choose the nonlinear spring
constant so that the maximum elastic force is the same in both the
linear and nonlinear models. Using this spring constant, we deter-
mine the damping parameters so that the restitution coefficients
are the same in the corresponding models. However, as will
be shown below, the restitution coefficient could be dependent
on impact velocity in some nonlinear models. In this case,
we fix an initial velocity to continue the comparison. In what
follows, we will investigate the range of restitution coefficient
from 1.0 to 0.1.

Using the set of parameters described, Eq. (1) is solved nu-
merically with initial velocity vy=0.6 m/s, to obtain the particle
overlap, force, and relative velocity. The results simulated with a
linear contact model are obtained first. The maximum overlap of
an elastic contact with e=1 for the set of parameters chosen is
about 0.1 mm, or 1% of the particle diameter. To obtain the
same elastic force under this maximum overlap with nonlinear
models, we need Kﬁxmax=K§Lxﬁf§X, where x,,, =maximum over-
lap; and K% and K\“=stiffness coefficients in linear and non-
linear contact models, respectively. With K:=1X10* N/m,
Xmax=0.1 mm in the linear model, the “equivalent” stiffness of
nonlinear models is K\“=1X 10° N/m*? when B=1/4 or 1/2.
The corresponding damping coefficient C, for the linear contact
model may be calculated using Egs. (2) and (3). The elastic and
viscous forces interact in the nonlinear models. No analytic
relation exists between the restitution and damping coefficient.
Therefore, we numerically solve for the restitution under different
C, and choose the corresponding values required to match the
linear case.

In the numerical simulation of the linear contact model, the
computational time step is normally set as 1/50 of the binary
contact time (Campbell 2002; Shen and Sankaran 2004). In the
nonlinear model, the computational time step cannot exceed the
Rayleigh time

TR

_
To= ————\p/G
k= 0.16v+088 "

where R=particle radius; and G=shear modulus. The Rayleigh
time is the time required for a Rayleigh wave to travel the
diameter of an elastic particle. For computational stability, the
time step has to be smaller than the Rayleigh time as well as
the characteristic time of the system dynamics determined by
the fastest moving and the smallest particles (Kremmer and
Favier 2001). Since the Rayleigh time is proportional to the
binary contact time (Babic et al. 1990), in this study we use a
more conservative value and let the time step be identical in both
the linear and nonlinear models. The total computational times
for both models are, therefore, very similar.

Results of the overlap, contact force, and relative velocity be-
tween two contacting particles are given in Fig. 1. These results
show that for a pure elastic collision, e=1, the particle overlap
and the interparticle force increase from zero to the maximum,
then symmetrically decrease to zero for both linear and nonlinear
models. But for dissipative collisions, differences exist among
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Fig. 1. Comparisons between linear and nonlinear models for particle—particle collision
linear and nonlinear models. In the linear model, the initial con- 2B-a)+(1+a)=0 (6)

tact force is not zero due to the simple viscous model, while the
nonlinear models are more reasonable, as pointed out in several
previous studies (e.g., Zhang and Whiten 1996). The contact du-
ration is sensitive to the choice of linear or nonlinear models.
These results are identical to those obtained analytically for the
linear contact model and nonlinear model when B=1/4 (Zhang
and Whiten 1996; Kuo et al. 2002). Just as previously reported,
spurious force reversal towards the end of the collision is ob-
served in all cases except when e=1.

It is well known that the restitution coefficient e depends on
the impact velocity. Ramirez et al. (1999) obtained a velocity-
dependent analytical solution of the restitution coefficient based
on Eq. (1). In their study, the dimensionless equation of motion
for colliding particles can be written as

1+«
2K

n

)’eOL

‘+°‘U[2(B—a)/(1+a)]+1

| 148
. . +
£+ 8(v)£P5 + )

0, 8(w)= Cn(

&)
where the dimensionless variables are defined as X=x/x,

£=x/v and £=(xo/v?)%, in which

L
I+a 2
Xo= U 1+a

and v=initial velocity. With the initial and terminal conditions

a+1
2K,

£(0)=0, £0)=1, X(¢,)=0, and )é(tc)=—e, t.=dimensionless dura-
tion of the collision, the solution of Eq. (5) is completely deter-
mined. Ramirez et al. (1999) thus proved that the dependence of
the terminal velocity on the initial velocity is entirely through the
parameter 8(v). Therefore, when the power of v in 8(v) vanishes
the restitution coefficient does not depend on the initial velocity.
For the power to vanish

The following two special cases satisfy the above equation: (i) a
linear model where a=1 and B=0 and (ii) the Hertz contact law
a=3/2, and a viscous model with B=1/4.

If «=3/2 and B=1/2, the normal restitution coefficient will
dependent on the impact velocity. For this nonlinear model, the
elastic force is based on the Hertz contact law, and the dissipative
force (viscous force) is calculated as (Schager and Poschel 1998;
Ramirez et al. 1999)

3 \‘,_ .
F,= EAK,, Vxx (7)

where

_ 1066y (1-v3)(1-20)
"3 3¢y + 2c Ev?

¢, and c,=damping coefficients of the pair of impacting particles.
Ramirez et al. (1999) obtained an analytic solution for the resti-
tution coefficient in terms of the following power series:

v\ 15 v \5 v\ v \45
e,=1+a|—= +a,| = +as3| = +ay| =
v v v v
(®)

with a;=—1, a,=3/5, a;=-0.315119, a,=0.161167, and (v*)™'?
=1.15344[(3/2)A|[(K,,/M,)*° where M,=(M,Mp)/(M,+Mp)
=effective mass of two particles M, and M.

Bridges et al. (1984) measured the normal restitution coeffi-
cient with ice particles under different impact velocities, and
found that the normal restitution coefficient could be fitted with
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This empirical formula appears to be quite different from Eq. (8).
To test this, we integrate Eq. (5) numerically with a=3/2,
B=1/2 to determine the restitution coefficient. Basically, we
bypassed the analytic solution by directly simulating the
restitution using the same contact law as in Ramirez et al. (1999).
In the numerical simulation, we use the appropriate parameters
for ice particles: E=9.1 GPa, v=0.28, p=920 kg/m3, and set
D=0.01 m. The coefficient A in Ramirez et al. (1999) is con-
sidered here as a fitting parameter due to the lack of information
of ¢, and c,. We set A=2.35E-5. Eq. (9) from Bridges et al.
(1984) and the present numerical reproduction of Ramirez’s re-
sults compared well, as shown in Fig. 2. Thus Eq. (8) predicts
similar results as the empirical formula Eq. (9) suggested in
Bridges et al. (1984).

Granular Flow Dynamics Simulated with Linear
and Nonlinear Models

So far, we have witnessed that contact law affects the details of
the force—velocity—displacement relation between two impacting
particles. Both the linear and nonlinear viscoelastic models have
problems describing the real physics of particle collisions. We
have also observed that contact law influences the dependence of
energy dissipation on the initial impact velocity. Next, we studied
the effect of contact law on the bulk behavior of granular flows
using the numerical procedure described in the binary collision
above. In particular, we focused the stress—strain-rate relation, the
coordination number, and the contact time of a simple shear flow
of multisize spheres.

We studied a system of spherical particles with a narrow
size distribution. The maximum and minimum particle sizes
are D.;,=0.9D and D,,=1.1D, respectively. Here, D=mean
particle diameter. We use a discrete element simulation to
study the simple shear flow of such a system. To create a
simple shear system with a finite number of particles, periodic
boundary conditions were applied. The computational domain is
10D X 10D X 10D. The particles are initially randomly placed in
this domain. The mean particle size is set at D=1 cm, particle
density p=1X10* kg/m?, and the contact friction coefficient is
set at w=0 in order to concentrate on the elastic and viscous
effects. For the linear model, the effective normal stiffness is
set at Kﬁ: 1.0X 10* N/m, and restitution coefficient e¢=0.6,
corresponding to damping coefficient C,=0.52 Ns/m. In the

Table 1. Relationship between Restitution and Damping Coefficients in
Contact Models

Material parameter Case 1 Case2 Case3 Case4
Restitution coefficient e 1.00 0.60 0.40 0.10
C, (Ns/m) in linear model 0.00 0.52 0.91 1.91
C, (Ns/m>*) in non-linear 0.00 5.80 10.13 21.39

model with B=1/4
C, (Ns/m*?) in non-linear 0.00 75.26 134.09  315.65
model with B=1/2"

o is set as 0.6 m/s for this case.

nonlinear model, «=3/2, and B=1/2 or 1/4. With the same par-
ticle size, density, and stiffness as in Fig. 1, the normal stiffness
for the nonlinear case is set at K\==1.0X 10® N/m*2. The damp-
ing coefficients for the nonlinear cases are from Table 1, i.e.,
C,=5.80 Ns/m** for B=1/4, and C,=75.26 Ns/m*? for
B=1/2. Because we study the frictionless case, the tangential
stiffness has no effect. Other details of the simulation follow
those described in Babic et al. (1990) and Shen and Sankaran
(2004), except the code is now expanded to simulate three-
dimensional (3D) spherical particle systems.

The dimensionless stress TZ-:T,»j/pDZ'\}2 and dimensionless
shear rate § ='y\e““pD3/ K, are used to analyze the relationship be-
tween stress and shear rate. Here, the “equivalent” stiffness of
linear model K%=1.0X 10* N/m is adapted in the dimensionless
shear rate for all three contact models. Using the parameters
above, four quantities are plotted in Figs. 3-5: the dimensionless
shear and normal stresses, and the coordination number and the
mean contact time with linear and nonlinear models. Only steady-
state data are presented in Figs. 3-5. The simulations were
performed until the strain became 50. The stress curves were
checked to confirm steady state. In the stress components, x indi-
cates the direction of shear and y the direction of shear gradient.
Fig. 3 is the summary of the linear case, where the resulting
dimensionless shear and normal stress, coordination number, and
contact duration are plotted. Fig. 4 summarizes the first nonlinear
case where a=3/2, B=1/4, and Fig. 5 is for the second nonlinear
case where a=3/2, B=1/2. We investigate a range of particle
concentrations from 0.4 to 0.65, and a range of dimensionless
shear rates from 1073 to 1072,

First, we compare the general appearance of the corresponding
plots among the three contact models. The range of dimensionless
stresses: shear and normal, coordination number, and contact time
duration, are very similar from one model to another. In a log—log
plot, only order of magnitude differences are immediately visible.
Therefore, when we compare these results among different con-
tact models, we notice that they do differ quantitatively, but are
within the same order of magnitude for the four quantities plotted.

The first two of the plots in Figs. 3-5 are the dimensionless
stresses. At low concentrations these dimensionless stresses do
not depend on the shear rate until dimensionless shear rate S
exceeds 0.1. When the concentration becomes greater than 0.62,
the dimensionless stresses in the log—log plot have a slope of —1,
indicating the real stresses become independent of the shear rate.
This same behavior was discussed in Babic et al. (1990) for two-
dimensional (2D) assembly of uniform disks and in Campbell
(2002) for 3D assembly of uniform spheres. This “phase transi-
tion” is extensively discussed in Campbell (2002). In his work,
Campbell suggests that the strength of the force chains developed
in the granular shear flow is responsible for the transition from a
rate-dependent constitutive relation to a rate-independent case.
Comparing these first two plots in each of Figs. 3-5, it is ob-
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Fig. 3. Bulk behavior of granular shear flow simulated with linear
model

served that such a transition is independent of the contact model.
We may also add that such a transition is independent of whether
uniform size particles or, in this case, a narrow size distribution of
particles, are investigated.

In the present discrete element method simulations we covered
a very wide range of flow states. The corresponding particle
deformation could be significant. If we use the linear contact
model, the relative mean deformation /4 can be estimated with
(h/D)~(Tny/K,1)=SzT;. Using this estimation, from Fig. 3 it
can be found that large deformations in excess of 1.0 X 1072 occur
in some of the cases. Most of the natural granular materials are
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Fig. 4. Bulk behavior of granular shear flow simulated with
nonlinear model (B=1/4)

rigid enough so that such large overlaps are uncommon. But,
manufactured granular materials of softer nature can reach such
deformation under an ordinary load.

If we further examine the coordination number, we observe
that a distinct change of behavior occurs when the concentration
increases. When the concentration is below 0.62, the coordination
number increases with increasing shear rate. The reverse is true
for concentrations of 0.65. This clear demarcation between rate-
dependent and rate-independent constitutive relations that is
observed in the stresses is, again, the same for all contact models
studied here.
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Fig. 5. Bulk behavior of granular shear flow simulated with
nonlinear model (B=1/2)

The third plot of Figs. 3-5 is to show the mean contact dura-
tion between particles. This is a measure of the possibility to form
groups of simultaneously colliding particles or the stability of the
force chains, if any, established in the assembly (Zhang and
Rauenzahn 2000; Shen and Sankaran 2004). The contact duration
decreases with increasing shear rate in all cases. This agrees with
intuition, since the more dynamic the shearing is the more likely
contacts can be built, but also more likely they can be terminated.
Therefore, we expect the force chains to weaken as the shear rate
increases. At very low concentrations, 0.4 and 0.5, the contact
time becomes nearly independent of the shear rate. At these
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Fig. 6. Bulk friction versus inertia number

low concentrations, the coordination number indicates that most
of the collisions are binary; no force chains exist. Since the
duration of the contact time is independent of the collisional
velocity in a linear model and only weakly dependent on the
velocity in a nonlinear model from our numerical results for
Eq. (1), it is natural to expect a near-constant contact duration for
low concentrations.

Discussion

Two recent studies considered Couette type 2D planar dense
granular flows (MiDi 2004; da Cruz et al. 2005), in which the
resulting bulk friction was related to the inertial number defined
as 1=VD\fpg/0},y, here p,=bulk density. It was found that the bulk
friction of a granular material over a large range of shear rate and
solid concentration collapses onto a single curve in terms of I.
Using the current data for a simple shear flow, we test whether a
similar trend holds. Figs. 6 and 7 are re-plots of the same data
as in Figs. 3-5. Unlike in MiDi (2004) and da Cruz et al. (2005),
we group the data into different dimensionless shear rates. In this
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Fig. 7. Concentration versus inertia number

way, more details of the bulk friction behavior in relation to I are
found. In general, the trend of increasing bulk friction and de-
creasing concentration with increasing / are the same as those
previously found for a 2D Couette-type flow. Such a trend is not
affected by whether a linear or a nonlinear contact model is used.
Because of the difference in material parameters used, quantita-
tive comparisons are not possible. Here, we used ¢=0.6, n=0
while MiDi (2004) used ¢=0.1 or 0.9, w=0, and 0.1-0.8, da Cruz
et al. (2005) used e=0.1 or 0.9, w=0.0, 0.4, and 0.8. However, it
is interesting to note that the bulk friction at low [ approaches 0.1
for the w=0 case, the same as in Midi (2004) and da Cruz et al.
(2005) despite the difference in other material parameters. By
grouping the results into different dimensionless shear rates, we
find that shear rate does play a role in the bulk behavior in addi-
tion to /. This dependence weakens as the solid concentration
decreases, as is clearly seen in Fig. 7.

As shown in Figs. 6 and 7, the stress levels, their dependence
on the shear rate, the coordination number variations, and the
contact duration are all qualitatively the same among the three
contact models. Therefore, in the simple shear granular flow the

bulk behavior of granular materials does not appear to be sensi-
tive to the contact model, at least qualitatively.

In other numerical studies of granular materials using linear
and nonlinear contact force models, a similar conclusion was
also obtained. For example, in the numerical study of granular
packings, the probability distribution of contact forces calcu-
lated with linear and nonlinear contact force models are compared
(Silbert et al. 2002). In a 2D annulus shear test simulated with
linear and nonlinear contact force models, the calculated porosi-
ties of multisize disk-shaped granular materials are also very
close (Claquin and Emeriault 2004).

Conclusions

In this study we adapt a simple general contact law with a parallel
spring and dashpot element. Both linear and Hertz nonlinear mod-
els are included in this general model with three damping choices:
one linear and two nonlinear. To compare these three models, the
collision processes between two particles are first summarized.
Then, the bulk behaviors of granular materials under a simple
shear motion are simulated. From the result of this study, contact
mechanics does play an important role at the binary collision
level, both quantitatively and qualitatively, but the linear contact
model is sufficient to describe qualitatively the bulk behavior of
granular materials. Quantitatively, results from a linear contact
model are different from nonlinear models. Within the nonlinear
models, results can be different for different model parameters.
Further study is required to determine the extent of these differ-
ences, especially for frictional materials.
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